Training and Technical Assistance Webinar Series

Statistical Analysis for Criminal Justice Research
II. Statistical Sampling: An Overview for Criminal Justice Researchers

Erin J. Farley Ph.D.
Stan Orchowsky Ph.D.

Justice Research and Statistics Association
4/28/2016
Training and Technical Assistance Webinar Series

This webinar is being audio cast via the speakers on your computer and via teleconference.

To access the audio stream information, select audio and audio conference from the menu bar. This will display the call information and the button to access the audio stream.

If you have speakers or headphones for your computer there is no need to call in, simply select call using computer.
All telephones have been muted. If you would like to ask a question please use the chat feature unless instructed otherwise. Please remember to select **Host**.
Webinar Objectives

1. Describe different types of probability and non-probability sampling designs
 – Address strengths and limitations of each design

2. Discuss the importance of sampling to the external validity of experimental designs and to statistical analysis
Sampling from the Population

What you can infer about pop.

Inference

Sampling process

What you actually observe in the data

Population

Sample
Terminology

- **Target Population**
 - Collection of elements about which we wish to make an inference

- **Unit/Case**:
 - Element you are interested in
 - People, organizations, documents etc.

- **Sampling Frame**:
 - List of all the units of the population of interest

- **Sample**:
 - Non-overlapping selection of units/cases drawn from the sampling frame

- **Representativeness**
 - Sample characteristics are similarly distributed as the populations characteristics
 - Sample estimates (statistics) can be generalized to the population

- **Sampling Error**:
 - Deviation between an estimate from a sample and the true population sample
SAMPLING TECHNIQUES

Probability
- Simple Random
- Systematic
- Stratified
- Cluster

Non-Probability
- Convenience
- Judgmental/Purposive
- Snowball
- Quota
Simple Random Sampling

• Every unit/element in the population has the known probability of being included in the sample.

• Number each element from 1 to N.

• Use random number generator to generate n distinct numbers between 1 and N.

 – Random Number Generator: https://www.randomizer.org
Simple Random Sampling Example
RESEARCH RANDOMIZER

How many sets of numbers do you want to generate?
Number of sets

How many numbers per set?
Numbers per set

Number range (e.g., 1-50)
From
To

Do you wish each number in a set to remain unique?
Yes

Do you wish to sort the numbers that are generated?
No

How do you wish to view your random numbers?
Place Markers Off

RANDOMIZE NOW!
Simple Random Sampling Example
Systematic Sampling

• Involves the selection of elements from an ordered sampling frame
 – Begin by selecting an element from the list at random and then every k^{th} element in the frame is selected
 • Every element does not have an equal chance of being chosen
 – Useful with homogenous groups
 – Be cautious of hidden patterns
Systematic Sampling Example
Systematic Sampling Example Cont.
Stratified Random Sampling

• Divide population into non-overlapping subgroups
• Utilize simple random sampling on each subgroup
• Two Types:
 – Proportionate and Disproportionate
Stratified Random Sampling

- African American Males
- Asian Males
- Latino Males
- Caucasian Males
StRS: Proportionate Example

African American Males: 25%
Asian Males: 10%
Latino Males: 15%
Caucasian Males: 50%
StRS: Proportionate Example Cont.

- African American Males
- Caucasian Males
- Asian Males
- Latino Males
StRS: Disproportionate Example

- African American Males
- Asian Males
- Latino Males

Caucasian Males
Cluster Random Sampling

- Population is divided into non-overlapping (geographic/regional) clusters or areas
- Subset of clusters is randomly selected for the sample
- One-stage sampling: All of the elements within selected cluster/area are included in the sample
- Two-stage sampling: A subset of elements within selected clusters are randomly selected for inclusion in the sample
 - Multi-stage
Cluster Sampling Example: Kansas
Cluster Sampling Example Cont.
Cluster Sampling Example Cont.

Second-Stage

Crawford County
Cluster Sampling Example Cont.

Third Stage
SAMPLING TECHNIQUES

Probability
- Simple Random
- Systematic
- Stratified
- Cluster

Non-Probability
- Convenience
- Judgmental/Purposive
- Snowball
- Quota
Convenience Sampling

• Also referred to as accidental or haphazard sampling
• Select sampling units that are most conveniently available at a certain point and a certain period, or time
 – Man on the street interviews
 – Teacher uses students
 • Psychology research
 – Volunteers
Purposive Sampling

• Also referred to as Judgmental Sampling
• Groups to be recruited are predefined
 – Subjective judgment by researcher
• Types:
 – Typical case sampling
 • Select cases that fit “typical” characteristics
 – Extreme (deviant) case sampling
 • Select usual or special cases
Quota Sampling

- Population is segmented into non-overlapping subgroups
- Researcher sets the proportions of each subgroup in the sample
 - Usually done to ensure the inclusion of a particular segment of the population.
 - Proportions may or may not significantly differ from the actual proportion in the population
Snowball Sampling

- When subjects are hard to find/very small population
 - Additional respondents are obtained from the initial sample respondents
Standard Error

• The standard deviation of the sampling distribution of a statistic (e.g., the mean)

\[SE = \frac{\sigma}{\sqrt{n}} \]

• Estimates how far the sample statistic (e.g., the mean) is likely to be from the population parameter
Confidence Intervals

• Gives us an interval estimate of where the population parameter (e.g., mean) will fall

 Upper limit = $\bar{X} + (z \times \text{SEM})$

 Lower limit = $\bar{X} - (z \times \text{SEM})$

• Estimates how far the sample statistic (e.g., the mean) is likely to be from the population parameter

 90% CI $z = 1.65$

 95% CI $z = 1.96$

 99% CI $z = 2.58$
1 SD $z = 1.65$
2 SD $z = 1.96$
3 SD $z = 2.58$
Sample Size

• Function of:
 – Confidence
 • The more confidence, the greater the sample size
 – Error rate
 • The smaller the error rate, the greater the sample size
 – Population variability
 • The greater the variability, the greater the sample size
 – To a degree, population size
 • The larger the population, the greater the sample size
Sample Size

Where $z = \text{confidence level} \ (1.96)$

$\sigma^2 = \text{variance} \ (SD^2)$

$e = \text{error} \ (.05)$
Sampling and Research Design

• Experimental Study (the “Gold Standard”)
 – Requires participants to be randomly designed to either a treatment or a control group
 – Random assignment controls for a variety of factors, other than the IV, that might account for observed group differences
 – These are “threats” to internal validity (Campbell & Stanley)
Sampling and Research Design

• **External Validity**
 – The generalizability of the study’s conclusions to:
 • Other people
 • In other places
 • At other times

• **Threats to external validity:**
 – Non-random (biased) sample
 – Non-response and dropout
Sampling and Research Design

• Another way of thinking about sample size: power analysis
• Type I error: concluding that there is an effect when in fact there is not (p < 0.05)
• Type II error: concluding that there is no effect when in fact there is
• To minimize Type II error, ask:
 – How large is the effect size I’m looking for?
 – Is my sample large enough to detect an effect of this size?
 • The smaller the effect size, the larger the sample will need to be
Future Topics in the *Statistical Analysis for Criminal Justice Research* Series

- Significance Testing: Comparing Means
- Significance Testing: Comparing Proportions
- Correlation and Simple Linear Regression
- Displaying Data
- Multiple Linear Regression
- Logistic Regression
- Exploratory Data Analysis